terça-feira, 28 de fevereiro de 2012

Qual a origem do nome Terra?



Vitório Alberto Lorenci e Davi B. Correia
A palavra vem do latim ters, secar. O termo era usado inicialmente apenas para designar terra firme, em oposição a mare, mar, e significava também território ou chão. Com o tempo, passou a refeir- se ao planeta, como em globus terrae (globo terrestre). Enfim, a expressão acabou reduzida a terra, com o mesmo significado. No caso das línguas não-latinas, a palavra vem do grego éraze, sobre o solo. Daí, por exemplo, earth (em inglês) e erde (alemão), nomes diferentes para a mesma Terra.
Revista Superinteressante

Via Láctea: Fábrica de Estrelas



A Via Láctea abriga 250 bilhões de astros como o Sol. Nossa galáxia pode explicar alguns enigmas cósmicos, como a natureza da chamada ¿matéria escura¿. É possível que seu núcleo seja um buraco negro.

Martha San Juan França
No árido deserto do Novo México, nos Estados Unidos, 27 radiotelescópios alinhados na forma de Y observam atentamente o céu. O conjunto forma o VLA (Very Large Array, traduzido habitualmente por Arranjo de Muito Longa Base), uma espécie de antena gigante capaz de detectar emissões de ondas eletromagnéticas das mais distantes galáxias. Há seis anos, um grupo de astrônomo do Instituto de Tecnologia da Califórnia (CalTech) apontou o VLA na direção da constelação de Sagitário, onde fica o núcleo da Via Láctea. Quando os computadores combinaram os sinais recebidos em cada uma das 27 antenas, estava pronta a primeira imagem da extraordinária fonte de energia ali existente - algo como 10 milhões de sóis.

“Supõe-se pelo tamanho e pela forma dessa fonte de energia que no coração da Via Láctea existe um buraco negro”, concluiu o astrônomo Kwok Yung Lo, da equipe do CalTech, referindo-se aos estranhos corpos, cuja existência ainda não foi comprovada, que exerceriam tamanha atração gravitacional sobre tudo que está a sua volta que nem a luz escaparia.

Pesquisas como a de Lo e seus colegas mostram que as respostas a algumas indagações importantes sobre a origem e a evolução do Universo - por exemplo, se o Cosmo está mesmo se expandindo - podem ser encontradas aqui mesmo na nossa galáxia, que abriga o Sol e o seu séquito de planetas, entre os quais a Terra. Deixada de lado durante algum tempo em favor de galáxias mais distantes, nestes últimos anos a Via Láctea “voltou ao centro das atenções”, como afirma a astrônoma Sandra dos Anjos, da Universidade de São Paulo. Equipados com novos telescópios e sensores eletrônicos, os cientistas tentam construir uma imagem mais completa da Galáxia, o que antes não era possível por que suas nuvens de gás e poeira prejudicavam a observação. A nova imagem mostra que a Via Láctea, como as outras centenas de bilhões de galáxias que se calcula haver no Universo conhecido, é uma fábrica que transforma matéria gasosa em estrelas. Ela se condensou na mesma época que suas irmãs, até 10 bilhões de anos atrás, a partir de uma nuvem primordial de gás em movimento, composta na maior parte de hidrogênio, com alguma porcentagem de hélio.

Essa colossal nuvem começou a se contrair pela ação da força gravitacional até ficar com uma aparência que pode ser comparada à de dois ovos fritos colados entre si pelas claras. A região interna, densa e concentrada, onde se supõe existir o buraco negro, gira mais rapidamente em redor de si mesma, como se fosse um corpo sólido. Já no disco em volta do núcleo, as nuvens de gás giram mais devagar. É o mesmo princípio, em escala descomunal, que permitiu a criação de um sistema planetário ao redor do Sol (SUPERINTERESSANTE nº11, ano 2). Em torno desse conjunto, distribuídos numa imensa esfera chamada halo, estão os aglomerados globulares, formados por centenas de milhares de estrelas.

Desde Nicolau Copérnico ( 1473-1543) se sabe que a Terra não é o centro do sistema solar. Mas por muito tempo ainda se acreditou que o Sol estivesse no centro da Via Láctea. Em 1917, o astrônomo americano Harlow Shapley (1885-1972), considerado um dos fundadores da Cosmologia moderna, acabou com essa idéia. Ao medir as distâncias da Terra de alguns aglomerados globulares que giram perto do centro da Galáxia. Shapley pôs o sistema solar no seu devido lugar: nos subúrbios do disco da Via Láctea, longe do centro cerca de 30 mil anos-luz ou inimagináveis 285 quatrilhões de quilômetros. A Via Láctea, ela própria, faz parte do que se chama Grupo Local, uma família de umas vinte galáxias por assim dizer vizinhas, entre as quais as conhecidas Andrômeda e as Nuvens de Magalhães, onde foi avistada há dois anos a supernova 1987 A. O Grupo Local parece dirigir-se para uma superconcentração de galáxias que se imagina também estar sendo atraída por um aglomerado ainda maior e mais distante (SUPERINTERESSANTE nº9, ano 2).

No interior da Via Láctea, há cerca de 10 bilhões de anos, começaram a aparecer os primeiros embriões de estrelas formados pela condenação de hidrogênio. No núcleo desses embriões, reações termonucleares transformaram o hidrogênio em outros elementos químicos: primeiro, hélio e depois carbono, que, por sua vez, provocou novas reações. Quando isso ocorreu, nasceram as primeiras estrelas e uma descomunal quantidade de energia foi liberada para o espaço sob a forma de luz e outras radiações eletromagnéticas. Dependendo de sua massa, depois de alguns bilhões de anos, muitas daquelas estrelas explodiram, expelindo o seu conteúdo para as nuvens de gás. Essas nuvens gigantescas são as incubadeiras de outras estrelas da Galáxia. Chamam-se nebulosas porque, vistas da Terra, parecem manchas esbranquiçadas, pois o seu interior é iluminado por uma infinidade de estrelas recém-nascidas.

Parte da matéria-prima que compôs o Sol e os planetas , bem como a combinação de átomos que tornou possível a vida na Terra, foi gerada no forno das primeiras gerações de estrelas da galáxia. “Somos todos feitos de pedacinhos de estrelas”, ousa o astrônomo Roberto Boczko, da Universidade de São Paulo. Ele explica que o espaço entre as estrelas é povoado por um arsenal de moléculas, formadas por átomos expelidos pelas próprias estrelas.

Depois de bilhões de anos, as moléculas se organizaram de forma cada vez mais complexa. Já foram identificadas cerca de cem moléculas diferentes, algumas simples, como carbono, oxigênio e nitrogênio, outras mais complexas, como o cianopentacetileno. “Cada tipo de molécula tem uma assinatura - uma freqüência única de rádio”, atesta o astrônomo Eugênio Scalise, do Instituto de Pesquisas Espaciais (INPE), que há cinco anos pesquisa a existência de moléculas de água nas proximidades de estrelas muito jovens.

Quem olha para o céu numa noite límpida e sem luar percebe a Via Láctea como uma brilhante faixa leitosa. Daí o nome: aos antigos romanos parecia um caminho de leite. Se fosse possível retratá-la de cima, a Via Láctea pareceria uma imensa espiral girando como um cata-vento em torno do núcleo. Os braços dos cata-vento indicam concentrações de matéria e são formados por estrelas e nebulosas. Esses braços são interrompidos por nuvens de poeira. O espaço em volta, embora pareça vazio, possui hidrogênio e outros gases, de forma rarefeita. O caminho de leite dos romanos é a Via Láctea como que vista de perfil. A quantidade de estrelas que ela parece abrigar depende de onde se encontra e para onde olha o observador - fora da faixa branca os espaços são pouco povoados. Na faixa, se vêem tantas estrelas que parecem formar uma única massa luminosa.

Com diâmetro de 100 mil anos-luz, que corresponde à metade da distância da Terra à Grande Nuvem de Magalhães, a Via Láctea tem cerca de 250 bilhões de estrelas (todas as 6 mil estrelas que se avistam a olho nu da Terra estão na Via Láctea). Mas uma boa parte da massa da Galáxia não se encontra nas estrelas, no gás ou nas moléculas interestelares até agora observadas. Ela pertence a alguma coisa que os astrônomos designam por matéria escura, por enquanto invisível, que ocupa um gordo naco de espaço, provavelmente na periferia do disco galáctico. “Não podemos ver a matéria escura, mas sabemos que existe pela influência gravitacional que exerce sobre os demais componentes observáveis da Galáxia”, explica Roberto Boczko. Em outras palavras, a Via Láctea não teria exatamente a forma que aparenta se não houvesse essa misteriosa matéria escura à sua volta.

“O cálculo da massa do Universo, que é um dos parâmetros usados para medir a sua evolução, deverá levar em conta a matéria escura”, esclarece Boczko. “Com esse dado será possível dizer se o Universo está mesmo em expansão, com as galáxias se afastando umas das outras como pontos na superfície de um balão de borracha que se enche.” Em teoria, a matéria escura pode ser qualquer coisa, de prótons a planetas. Alguns astrônomos acreditam que se trata de corpos conhecidos, como estrelas anãs pouco luminosas ou asteróides pequenos demais para serem visíveis.

Outros acham que a matéria escura é constituída de partículas subatômicas ainda desconhecidas. Seja qual for a verdade, sua eventual descoberta nesta ou em outras galáxias será com certeza um extraordinário avanço científico, comparável por exemplo à captação em 1965 da radiação de fundo remanescente do Big Bang, a explosão que deu origem à expansão do Universo. Se a Terra ficasse no núcleo da Via Láctea, as noites seriam muitíssimo mais estreladas. Enquanto a vizinha mais próxima do Sol, Alfa, da constelação de Centauro, está a 4 anos-luz de distância, o intervalo entre as estrelas do núcleo da Via Láctea é bem menor, quase igual ao dos planetas em relação ao Sol.

A distância entre a Terra e o Sol, por exemplo, é de 8 minutos-luz. Acredita-se que as estrelas do núcleo estão sendo atraídas para um ponto central, onde se supõe existir o buraco negro, revelado nas imagens captadas pelo VLA sob a orientação dos astrônomos do CalTech. Ultimamente, imagens ainda melhores do caroço da Via Láctea mostram que ali existe um aglomerado de fontes de calor. Pode ser que a massa combinada daqueles astros seja responsável pela atração exercida pelo núcleo - como se ali existisse não um, mas vários pequenos buracos negros. Para o astrônomo americano George Rieke, da Universidade do Arizona, “há evidências muito fortes de que as galáxias vizinhas, como Andrômeda, têm grandes buracos negros no centro”. Mas ele adverte: “Isso não significa que a Via Láctea tenha que seguir a mesma regra”. Uma das teorias correntes sobre os buracos negros afirma que eles seriam os motores que fornecem aos quasares a sua extraordinária capacidade de radiação.

As emissões dos quasares, cujo nome significa fonte de rádio quase-estelar (do inglês quasi-stellar radio source), são captadas de galáxias distantes bilhões de anos-luz da Terra (SUPERINTERESSANTE nº4, ano 2). São testemunhas dos primeiros tempos do Universo, ou seja, o jardim de infância das galáxias atuais. Alguns astrônomos acreditam que à medida que os quasares se apagam as galáxias amadurecem e herdam os buracos negros em seu núcleo. Segundo o astrônomo inglês Donald Lynden-Bell, da Universidade de Cambridge, e um dos mais respeitados estudiosos da Via Láctea, “os núcleos das galáxias são os cemitérios dos quasares que vemos brilhando na aurora do Universo”.

Há menos de dez anos, os astrônomos descobriram que as nuvens de gás quente em volta do núcleo da Via Láctea formam um arco agitado por enormes raios, resultado da ação de poderosas forças magnéticas. O espetáculo deve ser impressionante: esses raios, uma espécie de relâmpagos cósmicos, se estendem às vezes por centenas de anos-luz de distância. “Ao que parece, as nuvens de gás quente devem conduzir eletricidade, fornecendo o alimento necessário a esses relâmpagos”, especula um dos seus descobridores, o americano Marc Morris, da Universidade da Califórnia. Esta, porém, não é a única manifestação de atividade magnética no núcleo da Via Láctea. Astrônomos japoneses captaram as emissões de ondas gigantes de matéria rarefeita que se elevam várias centenas de anos-luz acima do plano da Galáxia e podem ser comparadas aos turbilhões de plasma que agitam a superfície solar.

Como em tantos outros campos da ciência, o que já se aprendeu sobre a Via Láctea rivaliza com o que ainda se ignora a seu respeito. Pode ser que nos próximos anos se saiba explicar alguns grandes mistérios, como a natureza da matéria escura e a constituição do núcleo galáctico - que, em última análise, estão ligados à origem e evolução do Universo. Como reconhece o astrônomo Marc Morris, “quanto mais se aprende sobre a Via Láctea mais complicada ela fica. Mas também se pode dizer que fica mais interessante:”.

AS IRMÃS DO SOL

Quando uma nuvem de gás nos braços em espiral da Via Láctea se contrai devido à própria gravidade, começam a ocorrer as reações termonucleares que fazem nascer as estrelas. Algumas, como as supergigantes vermelhas, são milhares de vezes mais brilhantes que o Sol; outras, como as anãs brancas, emitem uma luz tão fraca que equivale a 1 milionésimo da luminosidade solar. Essa espantosa diversidade tem uma explicação simples: trata-se apenas de uma questão de massa e idade. As estrelas mais pesadas produzem mais energia, sendo portanto mais brilhantes e quentes que as de massa menor. O Sol, por outro lado, deve esgotar seu combustível em 5 bilhões de anos. Então terá o tamanho de uma gigante vermelha, para depois murchar e virar uma anã branca. Sua massa será igual à que tem hoje, comprimida, numa esfera do tamanho da Terra.

Se a maioria da estrelas morre pacificamente de velhice, algumas, sobretudo as de maior massa, têm um final violento. Quando a estrela chega ao fim de sua fase de super-gigante vermelha as reações nucleares próximas ao núcleo ficam tão fortes que tudo explode e a matéria que compõe o astro é projetada em fragmentos no espaço: é a supernova. Nessa explosão colossal, a supernova brilha brevemente como 1 bilhão de sóis. Depois da explosão, seu núcleo se contrai até que ela se transforme numa estrela de nêutrons ou pulsar. Ao girar feito um turbilhão, a estrela de nêutrons emite radiações rigorosamente regulares, como os lampejos de um farol.

Teoricamente, o centro de uma estrela se transformará numa anã branca ou num pulsar, conforme a sua massa. Mas, caso essa massa seja excepcionalmente grande, quando a estrela se contrair nada conseguirá impedir o seu colapso; e quanto maior o núcleo, e ao mesmo tempo mais concentrado, maior será também a força gravitacional. A estrela transforma-se então num buraco negro.
Revista Superinteressante

Notícias Geografia Hoje


Efeito estufa: perigo na tundra siberiana

Efeito estufa pode causar o derretimento do solo das regiões de tundra da Sibéria e Canadá, liberando o metano que aceleraria ainda mais o aquecimento global da Terra.
Revista Superinteressante

terça-feira, 21 de fevereiro de 2012

Porque os planetas descrevem órbitas elípticas em torno do Sol?



Marcelo G. Rosa
Foi o astrônomo alemão Johannes Jepler (1571-1630) quem descobriu que os planetas se movimentam com velocidades variáveis e que o movimento tem a forma de uma elipse e não de um circulo perfeito, como se pensava até então. Mais tarde, verificou-se que o tipo de movimento dos corpos celestes depende da sua energia total, o que explica por que um cometa pode entrar e sair do sistema solar sem ficar preso no mesmo campo gravitacional dos planetas. Assim, a órbita será elíptica se a velocidade do corpo dor inferior à velocidade mínima de escape do campo gravitacional a que ele está sujeito.
Revista Superinteressante

O que são ciclones, furacões e tufões?



Wanderlei Zandoná e Damião B. Farias
Os ciclones sãos redemoinhos de ventos que iram em tornos dei um centro de baixa pressão, isto é, um local onde o ar quente, que é mais leve, elevou-se, sendo substituído pelo ar frio das proximidades. O sentido desses redemoinhos, que se movimentam por toda parte do globo, varia de um hemisfério para o outro (sentido horário ao norte e anti-horário ao sul). Já os ventos que circulam em torno de um centro de alta pressão são chamados anticiclones e têm sentidos opostos (anti-horário ao norte horário ao sul). Os ciclones que se formam na legião próxima ao equador assumem outros nomes furacões, no Caribe e no Oceanos Atlântico, e tufões, no Oceano Pacífico e no Mar da China. Esses ventos, conhecidos também como ciclones tropicais, são bem menores, mas muito mais rápidos e violentos. Enquanto o diâmetro de um ciclone pode alcançar 4 mil quilômetros e ter uma velocidade de 30 metros por segundo, o de um furacão chega a 500 quilômetros, só que a 60 metros por segundo.

Revista Superinteressante

De onde vêm os nomes dos oceanos?



Alberto C.M lervese
O nome do Oceano Atlântico tem origem mitológica, o do Pacifico, histórica, e os dos três restantes {Indica Glacial Ártico e Glacial Antártico. geográfica. Atlântico vem de Atlas, filho do deus dos mares. Netuno é pai das Atlântidas. Em 1520, quando navegador português Fernão de Magalhães percorreu o litoral sul-americano a oeste da Cordilheira dos Andes, ficou impressionado com a tranqüilidade das águas. Daí o nome Oceano Pacifico. Por sua vez, o Indico recebe o nome das costas que banha, da Índia e da Indonésia, já o Ártico, situado no pólo norte, sob constelação da Ursa Menor, deve o nome à palavra grega arctos, que significa urso. Por oposição geográfica, denomina-se Antártico o oceano próximo ao pólo sul.
Revista Superinteressante

"O Big Bang é um mal-entendido"



Hubert Reeves, astrofísico franco-canadense, fala sobre o Big Bang.

Hubert Reeves, um dos mais instigantes astrofísicos da atualidade, diz que a ciência não sabe como o Universo surgiu: `Ela nem sabe se o Universo teve uma origem^. Para ele, a Grande Explosão é só uma metáfora sobre o estado de Cosmo há cerca de 15 bilhões de anos.

O lançamento de um telescópio espacial e a construção de um anel subterrâneo para o choque de partículas subatômicas têm mais em comum do que a vista alcança: astrônomos, de um lado, e físicos, de outro, todos querem à sua maneira enxergar o Universo como era há uns 15 bilhões de anos, quando surgiu de uma explosão cósmica. Surgiu? Explosão? De repente, o Big Bang, uma das idéias científicas mais elegantes do século XX, sucesso de público e de crítica, começa a ser duramente questionado. Nada prova que o Universo tenha surgido, dizem os novos céticos. E, se surgiu, nada prova que tenha sido de uma explosão.

Nesse fascinante debate, uma voz ocupa cada vez mais o centro das atenções. Trata-se do astrofísico franco-canadense Hubert Reeves, 67 anos, doutor em Física pela Universidade de Cornell, nos Estados Unidos, ex-conselheiro científico da NASA e diretor de pesquisa do renomado Centro Nacional de Investigações Científicas (CNRS), em Paris. De aparência frágil, embora seu esporte preferido seja esquiar, e temperamento afável, embora não se recuse à polemica. Reeves cultiva uma barba bíblica e uma louvável atitude de humildade cientifica. Conhecido divulgador de obras de ciência, dedicou "a todas as pessoas maravilhadas com o mundo" um de seus livros editados no Brasil, Um pouco mais de azul (1986). O outro é A hora do deslumbramento (1988).




Hoje em dia, não é só aos homens de fé, mas, sobretudo aos homens de ciência, que se pergunta a respeito das grandes questões existenciais. Principalmente àqueles, como o senhor, que buscam encontrar nossas origens nas estrelas. Será que a Astrofísica quer se impor como uma nova metafísica?

Nem seria preciso. Se desde alguns anos os astrofísicos tornaram-se freqüentemente ouvidos sobre questões religiosas, se tanto as pessoas se perguntam qual o lugar do homem no Universo, talvez seja simplesmente porque tomamos consciência da nossa fragilidade e da do nosso planeta. Mas não se deve esquecer que ciência e religião percorrem campos muito diferentes: a primeira se pergunta como o mundo é feito: a segunda, como viver nossa vida de homens. Elas podem se esclarecer mutuamente, mas desde que cada uma permaneça em seu território. De rosto, sempre que a Igreja tentou impor sua explicação do mundo resultou um conflito. Lembrando-nos de Galileu e de Darwin

Não obstante, a religião católica parece aceitar bem atualmente as proposições da Astrofísica, a famosa teoria do Big Bang, por exemplo.

Sim. Talvez porque se fez do Big Bang uma nova mitologia, identificando-o à criação bíblica do mundo, o Fiat Lux (Faça-se a luz)

Mas como não fazer a aproximação? No princípio era o Big Bang, uma formidável explosão de luz, a 15 bilhões de anos, dando origem no Universo. Não é o que dizem os astrofísicos?

Não. Não podemos afirmar que o Big Bang seja a origem do Universo.

Mas é o que os senhores vêm repetindo há anos.

Eu sei. Provavelmente nós nos exprimimos mal e fomos também mal compreendidos. Hoje a ciência de modo algum pode afirmar que conhece a origem do Universo. Ela nem sequer sabe se o Universo teve uma origem. Falar de um começo implica obrigatoriamente a idéia de que antes desse acontecimento não havia nada. Ora, isso não sabemos.

Se assim é, se o Big Bang não é a Origem, o que quer dizer afinal essa expressão?

Ela designa o estado em que se encontrava o Universo há 15 bilhões de anos, eis tudo. Ou seja, a época mais longínqua que nossos meios atuais permitem alcançar. Somos como exploradores diante de um oceano: não sabemos se existe algo além do horizonte. Com efeito, o Big Bang não representa os limites do mundo, mas unicamente os limites dos nossos conhecimentos. Tudo o que sabemos é que há 15 bilhões de anos o Universo era muito diferente do atual: era extremamente quente — bilhões cie graus —, muito denso e desorganizado. Evidentemente, nada de vida, nada de estrelas, nada de galáxias. Nada de moléculas, nada de átomos, nada mesmo de núcleos atômicos. Apenas uma sopa gigantesca, um purê de partículas elementares: elétrons, fótons (ou seja, pequenos grãos de luz) e também quarks e neutrinos, os futuros constituintes dos átomos. Numa palavra, o caos.

Como se sabe disso?

Graças às descobertas da Física e da Cosmologia. Um primeiro grande princípio foi enunciado por Galileu. Antes dele, acreditava-se que existiam dois mundos: o nosso, cambiante e perecível: e o outro mundo, situado além da -Lua, imutável e eterno. -Não obstante, a Lua tem montanhas como a Terra'', constatou Galileu. O que sugere que ambas são astros que fazem parte de um mundo único e que este é regido pelas mesmas leis. É uma descoberta fundamental aquela que Newton enunciará por sua vez: as leis da Física se aplicam tanto à Terra quanto ao Universo inteiro. Graças a esse principio, desde o século XVIII foi possível, por exemplo, estudar o espectro atômico das estrelas e hoje simular as forças do Universo nos grandes aceleradores de partículas. Agora, existem provas de que as constantes universais, como a velocidade da luz ou a massa de um elétron, não variam há bilhões de anos.

Que provas são essas?

Ao contrario dos historiadores que jamais poderão contemplar Roma Antiga, os astrofísicos podem verdadeiramente ver o passado. Na escala do Universo, a luz não viaja tão depressa assim. Um telescópio é uma maquina de voltar atrás no tempo: permite observar astros muito longínquos como os quasares, cuja luz levou 12 bilhões de anos para nos alcançar, astros que não existem mais hoje.

Quer dizer que os astros que vemos essas miríades de estrelas, todas essas galáxias não passam de uma ilusão, uma imagem do passado?

Mas, tudo o que vemos é assim. Não se vê jamais o presente. Quando eu olho, para você, eu a vejo no estado em que estava há um centésimo de microssegundo, o tempo que a luz levou para chegar até mim. Um centésimo de microssegundo é muito tempo na escala atômica. Felizmente, os seres humanos não desaparecem nesse lapso de tempo e eu posso formular sem risco a hipótese de que você está sempre aí. O mesmo vale para o Sol: durante os oito minutos que sua luz leva para chegar à Terra, ele não muda fundamentalmente. Mas, para os astros distantes, é diferente. Quando se fixa um quasar, se recebe uma luz velha, emitida há 12 bilhões de anos. Ora, sabemos que a luz - outra importante descoberta da Física - é na verdade um fluxo de minúsculas partículas a que chamamos fótons. No nosso olho, ou na objetiva do telescópio, recebemos, portanto fótons muito velhos, que viajaram durante 12 bilhões de anos. Em laboratório podemos perfeitamente estudá-los e analisar, por exemplo, sua freqüência ou sua energia. Além disso, sabemos fabricar simplesmente um novo fóton, ao criar um lampejo de luz. Comparando as duas partículas, a muito velha e a nova em folha, encontramos as mesmas constantes físicas. As leis não mudaram passados bilhões de anos.

Ainda assim, o Universo mudou.

Sim, é de resto a grande descoberta do nosso século: o Universo evolui, tem uma historia, não é nem imóvel nem eterno, assim como Galileu, Newton e mesmo Einstein o pensaram.
Dispõe-se até de provas visíveis: a escuridão do céu por exemplo.

Por que isso seria uma prova da evolução do Universo?

Se o Universo fosse eterno, as estrelas teriam emitido luz desde sempre e o céu estaria repleto de claridade. Se é negro, é porque as estrelas nem sempre existiram. E porque, de resto, o espaço entre elas aumenta sem cessar. Disso estamos hoje convencidos: o Universo está em expansão. Foi um astrônomo americano, Edwin Hubble, chie por volta de 1930 constatou que as galáxias se distanciavam umas das outras, tanto mais rapidamente quanto is distantes fossem. Algo como um pudim de passas que se leva ao forno: á medida que ele cresce as passas se distanciam umas das outras. Esse movimento conjunto foi confirmado depois por numerosas experiências e hoje se admite que o Universo infla e esfria há cerca de 15 bilhões de anos.

Por que se chegou a 15 bilhões?

Basta passar o filme ao contrário. Quanto mais se volta atrás no tempo, mais as galáxias se aproximam: o Universo é cada vez mais denso, logo cada vez mais quente e cada vez mais luminoso. Chega-se assim a 15 bilhões de anos. Nesse instante a densidade da matéria é infinita, assim como a temperatura do Universo. Tudo isso está confirmado por fósseis descobertos recentemente.

Fósseis?

Fósseis cosmológicos são, com efeito, os dados de observação que permitem reconstituir o passado. Algo como os pré-historiadores fazem com fragmentos de ossos. Assim descobrimos uma "radiação fóssil" que permitiu calcular que há 15 bilhões de anos o Universo tinha uma temperatura de pelo menos 3 mil graus. Outros elementos recentes, as medidas da relativa abundância de hidrogênio e de hélio, mostram que cerca de 1 milhão de anos antes o calor alcançava 10 bilhões de graus. E mesmo somente alguns minutos antes, vários bilhões de graus.

Eis então nosso Big Bang. Voltamos à idéia de um começo. Se retornamos no tempo, o seu Universo-pudim é apenas uma bola, com todas as passas agrupadas.

Não. Nossos modelos matemáticos sugerem que, nesse instante, mesmo que a matéria estivesse num estado de densidade muito grande, o Universo era já infinito. Ou, se você preferir, um purê de dimensões infinitas.

Nada de explosão inicial então?

Podemos reter a imagem da explosão se admitirmos que aquilo explodia em toda parte, em cada ponto do espaço.

Por que o nome Big Bang?

Foi por desprezo que um pesquisador, Fred Hoyle, assim designou, ridicularizando essa teoria de que ele não gostava. Hoje é aceita por todos os cientistas, mas o Big Bang para nós é apenas uma metáfora, pois, em relação àquele momento, nossas noções tradicionais de tempo e espaço não fazem mais sentido.

Por quê?

Porque, nessas altíssimas temperaturas, nossas teorias não se aplicam mais. Toda a Física afunda. Atualmente dispomos de duas grandes teorias: a Física Quântica, que explica muito bem o funcionamento dos átomos e de suas interações, desde que estes não sejam expostos a uma forte gravidade: e a Teoria da Relatividade, que descreve bem o comportamento da matéria sob forte gravidade desde que não se a considere como um conjunto de átomos. Portanto, nenhuma se permite estudar as partículas submetidas a uma forte gravidade, como, foi o caso há 15 bilhões de anos. E o problema fundamental da Cosmologia contemporânea: não conseguimos conciliar essas duas teorias. Muitos pesquisadores, entre os quais Stephen Hawking, trabalham nessa direção. Eles inventam modelos físicos muito complexos, como a "supersimetria", as "supercordas", a "supergravidadc" ou ainda os "miniuniversos". Mas até o presente com pouco sucesso.

Nem se pode dizer se houve ou não um “antes”?

Justamente, não. No passado, quando alguém perguntava o que fazia Deus antes de criar o mundo, havia o costume de responder: “Ele preparava o inferno para os que fizessem essa pergunta”. Santo Agostinho, de seu lado, respondeu: "Perguntar isso supor que o tempo existisse antes da criação do mundos, Ora, também o tempo foi criado”. Hoje em dia os astrofísicos estão um pouco na mesma situação.
Nas condições do Big Bang já não podemos aplicar nossas teorias, o espaço-tempo não é mais definido, não sabemos mais o que significa a palavra “antes”. Eis por que a questão da origem nos deixa, a nós, astrofísicos, mudos e desamparados.

De onde pode vir a solução? Da teoria ou da observação do céu?

Das duas. É necessário que encontremos uma teoria mais global do Universo. Mas estou pronto a apostar que a observação e a descoberta a precederão. Os seres humanos, com efeito, não tem muita imaginação. Poderemos talvez progredir graças ao telescópio espacial, por exemplo, que nos permitirá enxergar mais longe, sem sermos atrapalhados pelo véu da atmosfera terrestre, portanto voltar atrás bastante no tempo durante o milhão de anos que se seguiu ao Big Bang.

E talvez até a este?

Não o “veremos” realmente, pois, quanto mais nos aproximamos, mais o Universo fica opaco, velado pela luz emitida durante o milhão de anos seguinte. Mas, com outros instrumentos, como o telescópio de neutrinos, ainda num futuro longínquo, poderíamos obter uma espécie de radioscopia do Universo, o equivalente ao que se vê do corpo ao observar as imagens de raios X ou dos scanners. Por volta do ano 2000, o telescópio de gravitons, uma espécie de sismógrafo do espaço, permitirá receber não a luz dos astros como um telescópio clássico, mas suas ondas gravitacionais.

Já se conhece bem, agora, o enredo que se desenrolou depois do Big Bang?

Sim, algumas etapas. Ao esfriar, o Universo vai se estruturar conforme o jogo das quatro forças fundamentais que se diferenciaram pouco após o Big Bang: a gravidade (que nos mantém no chão e governa os astros), a força eletromagnética (que une os átomos, por exemplo, o oxigênio e o hidrogênio na molécula de água), a força nuclear forte (que sol- da os núcleos dos átomos) e a força fraca (que governa os neutrinos). Alguns milionésimos de segundos após o Big Bang, as partículas de matéria, os quarks, começam a se organizar em prótons e nêutrons. Estes, por sua vez, vão formar os primeiros núcleos dos átomos simples, como o do hélio. Este último é muito estável – até demais, pois vai frear essa evolução durante um milhão de anos, tempo em que o Universo continua a esfriar e se presta a novas combinações.

Portanto, a evolução não continuou?

Não, Houve soluços, períodos de aceleração. E fases parecidas com as da água, que , ao esfriar, passa do estado de vapor ao de liquido, depois ao de gelo. O Universo passou inicialmente do estado de radiação ao de matéria. Desde então, a gravidade começa a agir: a sopa de partículas forma coágulos, a matéria se concentra em grandes massas: as galáxias, depois as estrelas. Estas vão servir de cadinho aos prótons e aos nêutrons que ai se instalam em núcleos de átomos. Alguns milhões de anos mais tarde, certas estrelas, por falta de combustível, sucumbem e morrem, expulsando sua matéria. Dessa vez, graças à força eletromagnética, os núcleos ejetados se associam enfim em átomos e em moléculas: o hidrogênio, o oxigênio, o gás carbônico e também grãos de poeira, os primeiros sólidos, que irão se agregar para formar os planetas. O nosso nasceu há 5 bilhões de anos. No oceano primitivo, as moléculas cada vez mais complexas se combinam de modo a formar as primeiras células, os primeiros seres vivos. A evolução biológica segue se curso, o homem aparece... Pode-se dizer que os bilhões de bilhões de partículas que constituem os átomos do nosso corpo já existiam há 15 bilhões de anos. A diferença é que hoje elas não estão mais no caos, mas agrupadas na estruturas extremamente complexas que permitem o pensamento.

Quer dizer que a história do Universo é a história da complexidade?

Ela pode ser lida como tal. O Universo sempre evolui d simples para o complexo. Mas atenção: isso só diz respeito a uma porção muito pequena do espaço. A maior parte está ainda muito desorganizada. As nuvens de gás que existem entre as estrelas se parecem com aquilo que eram no momento do Big Bang. Podemos observar uma espécie de pirâmide da evolução cósmica. Quanto mais organizada e complexas as estruturas, menos elas são numerosas. É de certo modo como na Terra: os grandes predadores são menos numerosos que suas presas.

Em suma, o senhor estendeu ao Universo inteiro a idéia darwiniana da evolução e fala como se o Universo tivesse obedecido a uma espécie de lógica. Diria o senhor que o apartamento dos planetas e da vida era inevitável?

Eu tenderia a dizer que sim. Mas é uma opinião pessoal, da qual alguns dos meus colegas não partilham. As leis físicas são ajustadas para produzir a complexidade. Assim, de duas uma: ou elas mesmas decorrem de um principio mais geral, de uma espécie de teoria última do Universo o crente dirá que um ser supremo as fez férteis ou, como dirá ateu, elas decorrem do acaso. Mas nesse ponto se sai da ciência. O que parece assentado é que a complexidade estava inscrita desde o Big Bang. Todavia ela só pôde se expandir em razão do desequilíbrio do Universo.

Como assim?

Se o Universo tivesse esfriado muito lentamente, a matéria teria alcançado depressa um equilíbrio, ela se teria condensado em ferro, o elemento mais estável, e não teria evoluído. Não se conhecem elementos complexos construídos somente a partir de átomos de ferro. Felizmente, graças a seu esfriamento rápido, o Universo pôde produzir em quantidades importantes os outros átomos, corno o carbono, que se presta a muitíssimas combinações, até formar a extrema complexidade do cérebro humano, estrutura distante da estabilidade. De certo modo o equilíbrio é a morte. Um cadáver, por sinal, assume esse estado: as moléculas das quais é formado se desintegram em moléculas rnais simples.

Será que o Universo vai recuperar um dia um equilíbrio, será que ele também morrerá ou vai inchar e esfriar indefinidamente?

Pensa-se que ele continua a esfriar, mas cada vez menos depressa. Nosso Sol vai morrer em 5 bilhões de anos, depois de ter gasto seu combustível. Em mil bilhões de anos todas as estrelas do Universo estarão consumidas e se pensa que não haverá novos astros em formação. Restarão os buracos negros, que requerem mais tempo para se evaporar. E depois? Não se sabe. Mas é muito possível que não tenhamos arrolado todas as forças da natureza, que exista uma quinta, uma sexta força... No começo do século, só se conheciam duas. Ora, toda nova força é suscetível de prolongar a vida do Universo. De acordo corn outro enredo, a temperatura do Universo tornará a subir nesse caso seria necessário retomar filme de trás para diante. Num certo momento teria havido tanta luz que o céu se tornaria branco. A Terra se vaporizaria, a matéria se dissociaria. Nada de vida, nada de organização. As partículas dissociadas recuperariam um estado de equilíbrio. Mas esse enredo é pouco compatível com as observações e não se crê muito nele.

Será que aparecimento do homem modifica essa longa marcha da complexidade?

O homem já intervém na evolução, inventa inteligência artificial. Os cérebros humanos continuam a produzir complexidade. Nós apenas damos continuidade à tarefa da natureza.

Pondo-a em perigo.

Sim. Se nos damos conta de tudo que foi necessário para se chegar aonde estamos, à primeira margarida e a esses seres que agora podem tomar consciência do Universo e discutir suas origens, isso deveria incitar-nos a uma avaliação do nosso comportamento presente.

- O Universo começou sem o homem e terminará sem ele”, disse o antropólogo Lévi-Strauss. O senhor está de acordo com ele?

O homem, talvez, mas não necessariamente a inteligência. Se o ser humano desaparecer, poderia haver outras espécies inteligentes que talvez alcançassem níveis de complexidade ainda mais elevados. Todo o Universo é construído de maneira homogênea. Para onde quer que se olhe se percebe que as primeiras etapas da complexidade já foram superadas: existem estrelas e galáxias que se parecem bastante às nossas e se pode postular ali a própria presença de carbono. Se uma molécula possui mais de quatro átomos, existe carbono! Pode-se assim supor que as etapas seguintes da complexidade tenham sido franqueadas em outros planetas. A inteligência e a consciência me parecem produtos mais ou menos inevitáveis da história do Universo. Penso que elas prosseguirão na sua evolução. Com ou sem nós.

- Os astrofísicos são comparáveis a exploradores diante do oceano: não sabem se há algo além do horizonte

- A grande descoberta do nosso século é a de que o Universo tem uma historia: não é imóvel nem eterno, mais evolui

- Se o Cosmo fosse eterno, a luz das estrelas existiria desde sempre e o céu estaria cheio de claridade

- Esfriando depressa, o Universo criou os átomos que formariam a extrema complexidade do cérebro humano.
Revista Superinteressante

sábado, 18 de fevereiro de 2012

A morte do Sol



A morte do Sol

Daqui a 7,5 bilhões de anos o Sol vai se apagar. Mas, antes disso, vai crescer, brilhar muito mais e quase derreter o sistema solar.
Thereza Venturoli

Ano 1 500 001 997 d.C. Um Sol gigantesco se levanta sobre o horizonte leste da Terra. Se você pudesse acordar nessa manhã, daqui a 1,5 bilhão de anos, não encontraria nada do mundo que conhece hoje. Nossa estrela está 10% mais brilhante e parece ocupar um pedaço enorme do céu, que por sinal não é mais azul. A atmosfera, opaca, úmida e abafada, é dominada por uma luz cor-de-laranja e amarela. Sobre o solo árido não há água, nenhuma planta ou animal. Enorme, brilhante e abrasador, o Sol está começando a morrer. E os primeiros sintomas da sua longa agonia já eliminaram a vida da Terra. Essa é a previsão da equipe de astrônomos liderada por Juliana Sackmann, do Instituto de Tecnologia da Califórnia.
Como todas as estrelas, o Sol brilha porque tem massa demais. Os átomos de hidrogênio do seu núcleo não suportam o peso sobre eles e se fundem, causando ininterruptas reações nucleares. A cada segundo, são queimadas 700 milhões de toneladas de hidrogênio, liberando 386 bilhões de bilhões de megawatts de energia como calor, luz visível e outras radiações. Compare: a potência da Usina de Itaipu é de 12 600 megawatts por ano! Apesar de tanto vigor, o Sol perde hoje uma fração mínima de matéria. Mas daqui a cerca de 7 bilhões de anos, o hidrogênio terá se esgotado e o astro começará a queimar hélio. Aí, a energia liberada será tão maior que ele se transformará numa gigante vermelha – uma estrela que pulsa, variando seu diâmetro em milhões de quilômetros. Mercúrio será engolido e destruído.

Planeta duro de matar

O tamanho e o brilho solar chegarão ao máximo daqui a 7,5 bilhões de anos. Segundo Juliana Sackmann, seu raio ficará mais de 200 vezes maior, chegando muito perto da Terra. E seu brilho, 5 000 vezes mais intenso. Isso quer dizer que a estrela estará lançando sobre o sistema solar 5 000 vezes mais energia do que hoje. O calor na Terra será muito superior ao de Vênus atualmente, que é de 500 graus Celsius. O antigo planeta-água virará uma imensa caldeira, com temperatura capaz de derreter chumbo. “De acordo com a quantidade de matéria ejetada pelo Sol, a Terra pode ficar muito mais quente ainda”, previram Juliana e seu colega Arnold Boothroyd, da Universidade de Monash, na Austrália. E poderia até ser destruída nesse inferno dantesco. Mas vai acabar fugindo para longe (veja na página seguinte).

O carrossel enlouquece

À medida que o brilho for aumentando, o vento solar lançará mais e mais energia e matéria da estrela moribunda espaço afora. Esse efeito reduzirá muito a massa do astro e, conseqüentemente, sua força gravitacional. “Até o ponto em que as amarras da gravidade estarão tão frouxas que os planetas correrão para mais longe”, explicou à SUPER Walter Maciel, do Instituto Astronômico e Geofísico da Unversidade de São Paulo. “Mas não escaparão do sistema solar.” Para saber exatamente quanto cada planeta se deslocará, seria necessário medir a quantidade precisa de massa perdida pelo Sol. “Mas calculamos que Vênus se moverá para a órbita atual da Terra e nosso planeta, para a de Marte”, disse Juliana. Os planetas exteriores, como Júpiter e Saturno, também entrarão no enlouquecido carrossel. Suas órbitas deverão dobrar de diâmetro.

Depois do suspiro final

Com os planetas girando mais longe, a solitária estrela agonizará por mais alguns milhares de anos. Na tentativa de reacender a fornalha em seu interior, ela terá se expandido e contraído quatro vezes, no total. A cada expansão, mais matéria será jogada fora. O Sol irá se enfraquecendo e se apagando aos poucos, até o suspiro final. Aí, o que um dia foi astro-rei amarelo e gigante vermelha não passará de uma anã branca – um corpo carcomido, com metade da massa atual espremida numa esfera com diâmetro 17 vezes menor que hoje e sem forças para liberar energia. Uma nebulosa, nuvem de poeira e gases resultante do desgaste estelar, envolverá o sistema solar mumificado. Os planetas, com exceção de Mercúrio, continuarão a longa e fria jornada em torno da carcaça estelar.

A saga terráquea segue

Que o Sol não duraria para sempre os astrônomos já sabiam. Estudando outras estrelas, eles construíram o modelo tradicional, que prevê o desaparecimento da Terra daqui a 5 bilhões ou 6 bilhões de anos, engolida pelo astro moribundo. A diferença do trabalho de Juliana e Boothroyd é que, nele, o Sol recebe tratamento personalizado. “Levamos em conta a variação de brilho e de tamanho específica da nossa estrela”, disse Juliana. A conclusão é o que você viu nas páginas anteriores: a Terra pode não ser engolida, mas jogada para longe – que bom! Mas toda forma de vida desaparecerá em 1,5 bilhão de anos – que mau!

Desanimador? Nem tanto. Há gente séria achando que, até lá, o homem pode salvar o planeta. O astrofísico canadense Hubert Reeves, da Universidade de Montreal, vê duas saídas: reacender a fornalha ou empurrar a Terra para longe do inferno estelar (veja o infográfico abaixo). Reeves admite que nenhuma delas seria viável hoje. Mas quem sabe lá na frente dê. “É tudo uma questão de desenvolvimento tecnológico”, disse ele, otimista, à SUPER. Arnold Boothroyd acha mais fácil nos mudarmos para outro mundo. No que ninguém aposta é que a espécie humana sobreviva até lá. “É difícil imaginar um futuro tão remoto”, afirmou Boothroyd. “Seria como se o homem das cavernas pudesse adivinhar a sociedade atual.” Ainda assim, é bom crer que, na falta do Homo sapiens sapiens, outro ser inteligente qualquer leve a saga terráquea adiante.

Para saber mais

NA INTERNET:

Para encontrar o artigo científico de Juliana Sackmann e Arnold Boothroyd, digite o nome dos autores e o título do trabalho (Our Sun. Present and Future) no campo search do endereço: http://adsabs. harvard.edu/abstract_service.html

Esta será a aparência da Terra daqui a 3,5 bilhões de anos, quando o Sol estará a meio caminho da morte. O que um dia foram os oceanos terá se transformado em vastas planícies. E os antigos continentes terão se tornado planaltos. É que, por aquele tempo, o Sol terá aumentado em 40% o seu brilho, secando de vez o planeta e varrendo a atmosfera para o espaço

Ao emagrecer, ela crescerá
Ao lançar mais energia e matéria, a estrela se espalhará.
Hoje, o Sol perde, por ano, menos de um trilionésimo de sua massa. Os planetas permanecem estáveis em sua órbita.

Daqui a 7 bilhões de anos, ele comecará a pulsar. Seu diâmetro crescerá milhões de quilômetros e engolirá Mercúrio.

No auge da catástrofe, a Terra não passará de uma bola incandescente, a centenas de graus Celsius, sem atmosfera. As rochas terão se derretido e o relevo, se achatado

Quanto maior, mais fraco
O Sol perde matéria e solta os planetas.
Daqui a 7,5 bilhões de anos, o Sol começará a pulsar, aumentando e diminuindo de tamanho em mais de 200 vezes.

Em cada expansão ele perderá matéria. Sob menor força gravitacional, os planetas saltarão para órbitas mais distantes.

Passado o desastre, uma nebulosa –nuvem de poeira e gases resultante do desgaste estelar – se dissipará pelo espaço, para muito além dos limites do que foi um dia o nosso sistema solar

Como escapar do fogo cruzado
Além de mudar de planeta, a humanidade tem duas soluções para salvar a Terra.
Reavivar o Sol. Foguetes nucleares ou raios laser seriam lançados no depósito de hidrogênio, próximo do núcleo, que queima hélio. O combustível entra de novo em reação nuclear. O Sol ganha mais alguns bilhões de anos.

Mudar de endereço. Foguetes nucleares empurrariam a Terra para além da região de Saturno. A energia para a operação viria da fusão do hidrogênio retirado da água do mar. Seria preciso esgotar 10% dos oceanos.
Revista Superinteressante

Rei Sol

Rei Sol
Durante milênios o homem adorou o Sol. Nos últimos 500 anos, começou a conhecê-lo. Dele, a Terra recebe algo como a energia de 10 bilhões de Itaipus. E isso é apenas uma ínfima parcela da luz e calor que emite. Sem ele nenhuma forma de vida existe

Flávio Dieguez

Em apenas 1 segundo, o volume de vapor que se forma sobre os rios e plantas da floresta amazônica equivale a quase 200 mil toneladas. Isso é mais do que o próprio rio Amazonas despeja no mar em qualquer momento: 160 mil toneladas por segundo. Lado a lado, essas duas grandes correntes de água criam imponente sistema de circulação tão essencial à sobrevivência da maior floresta do mundo quanto as artérias para o corpo humano. Há cerca de 200 milhões de anos — idade aproximada da própria mata —, o sistema vem funcionando com incrível regularidade e eficiência. Mas o espetáculo dessas forças perde todo o brilho e grandeza quando comparado com a sua fonte de energia — o Sol.

Vista da superfície do astro-rei, a Terra é um irrisório grão de areia girando à remota distância de 150 milhões de quilômetros. Mesmo assim, a ínfima parcela de luz e calor que efetivamente alcança o planeta — em vez de perder-se em outras direções no espaço vazio — é suficiente para dar vida e movimento aos oceanos, ventos, florestas, a cada um e a todos os organismos. Essa energia, que os antigos atribuíam aos deuses, pode hoje ser calculada com precisão. Equivale à eletricidade que seria gerada por 10 bilhões de hidrelétricas do porte de Itaipu. Não admira que o homem primitivo das mais diversas latitudes — e o já nem tão primitivo assim — tenha adorado o Sol sobre todas as coisas, num culto feito de reverência e temor, a ponto de incluir sacrifícios humanos.

Dos 2 milhões de anos que já dura a saga do homem na Terra, apenas nos últimos quinhentos começou-se a conhecer algo sobre a estrela que dá vida ao planeta. E só muitíssimo recentemente — depois da Segunda Guerra Mundial — os astrônomos passaram a ter uma idéia mais precisa do que acontece por trás de sua face de fogo. Mas, desde então, as descobertas não cessaram de se acumular rapidamente, à medida que os instrumentos de observação foram-se tornando cada vez mais sofisticados. Os projetos modernos são espetaculares, a começar pela esperta nave-robô norte-americana Starprobe (Investigador de Estrela) que em missão suicida mergulhará diretamente sobre as labaredas solares, transmitindo informações até ser consumida.

Essa nave deveria voar já este ano, mas seu lançamento foi adiado por causa dos cortes impostos ao programa espacial dos Estados Unidos. Assim, enquanto não sai a primeira viagem ao Sol, outras expedições ganham impulso. Uma delas é o vôo da nave européia Ulysses, que deverá estar pronta para partir em 1990. Menos audaciosa que a Starprobe, ela pretende apenas ficar em órbita solar. Mas a rota é importante: a nave passará sobre o que se poderia chamar de lado oculto do Sol — os seus pólos, sempre em posição impossível de ser observados da Terra. Depois de Ulysses, subirá a Soho, também européia, cujo destino será estacionar a uma distância fixa e segura do Sol, o suficiente para observar e analisar o seu comportamento.

É uma missão de respeito: afinal, qualquer irregularidade no funcionamento dessa imensa usina energética pode ter conseqüências imprevisíveis sobre toda a vida na Terra. É por prover a vida que o Sol é para nós o mais importante astro do céu, embora seja apenas uma das dezenas de bilhões de estrelas que giram conjuntamente nesse grande redemoinho que é a Via Láctea. A galáxia em que o Sol nasceu e vive é um disco de estrelas que levará inimagináveis 200 bilhões de anos — bem mais de dez vezes a idade do Universo — para dar uma volta completa sobre si mesmo. A galáxia contém astros maiores e menores: o Sol fica numa posição de classe média — tanto em tamanho como em brilho ou peso. Mas está muito próximo: sua luz, que é a coisa mais rápida do Universo, leva apenas oito minutos para chegar à Terra. Ao passo que a estrela mais próxima, Alfa da constelação de Centauro, está a quatro anos de viagem, mesmo à velocidade da luz. O centro da galáxia, em igual pique, fica a 30 mil anos de distância.

A nave espacial Soho, portanto, será uma repórter em posição privilegiada. Ficará atenta especialmente às ondas gigantes que agitam a superfície solar. É um meio indireto mas engenhoso de saber o que está se passando nas regiões interiores do Sol. Ao contrário dos planetas ou da Lua, as estrelas não são corpos sólidos. Por isso, mesmo que a nave Starprobe levasse um imaginário astronauta invulnerável ao fogo, este jamais poderia pisar na superfície do Sol — a exemplo do que os americanos fizeram na Lua em 1969.

A matéria do Sol é o plasma, uma espécie de gás. Mas o plasma não é neutro, como os gases que se conhecem: suas partículas são fragmentos de átomos ou moléculas e possuem temperaturas altíssimas. No interior do Sol, o plasma atinge quase 20 milhões de graus, um valor que na superfície brilhante cai para 5 mil graus. Logo acima da superfície, porém, o plasma se torna muito rarefeito e sofre a ação de poderosas forças magnéticas. Sua temperatura, então, é mais alta que na superfície, brilhante, alcançando até 2 milhões de graus.

A nave européia Soho também fará medições constantes do chamado vento solar, uma leve corrente de plasma que está constantemente se desgarrando do Sol para espalhar-se pelo espaço. O efeito mais célebre do vento solar são as caudas dos cometas, criadas quando estes se aquecem nas proximidades da estrela. A brisa eletrificada, nesse caso, desagrega o núcleo do cometa e empurra para longe do Sol uma grande quantidade de pó e gás liberados dessa forma.

Todos esses fenômenos, embora fascinantes, são meros espirros do gigante, cuja força real arde profundamente em seu núcleo. É verdade que a superfície, é às vezes sacudida por explosões violentas, gerando erupções de plasma que se estendem por até 200 mil quilômetros no espaço — trinta vezes o diâmetro da Terra. Mas essas línguas de fogo são relativamente tênues, apesar de compridas. No corpo do Sol, em vez disso, caberiam com alguma folga 1 milhão de planetas como o nosso. Esse volume tem um raio de 1,5 milhão de quilômetros — 250 vezes maior que o raio da Terra.

Já o núcleo solar é uma esfera de raio dez vezes menor que o da própria estrela, mas com uma densidade extremamente alta. Ele suporta todo o peso das camadas externas. Assim, é mais compacto que o ferro. Mas continua sendo um gás porque compensa o esmagamento com sua elevada temperatura: o calor, procurando expandir-se, contém a gravidade da massa acima do núcleo. Esse é o fantástico jogo de forças que mantém as estrelas por assim dizer de pé e em funcionamento, numa luta perene entre o seu próprio peso e o calor central.

Em 1926, o astrônomo inglês Arthur Eddington fez uma ousada sugestão sobre a origem desse calor: ele só podia ser gerado por um reator nuclear. A comunidade científica se escandalizou porque então se conhecia muito pouco sobre as reações atômicas. Algumas décadas mais tarde, porém, viu-se que a teoria estava certa. O plasma no núcleo do Sol sofre transformações semelhantes às que ocorrem na explosão de uma bomba de hidrogênio e, também como neste caso, passa a emitir radiação principalmente sob a forma de luz e calor.

Essa radiação não é visível, pois ainda tem de atravessar as camadas externas, um percurso longe de ser curto. Estima-se que um raio de luz leve milhões de anos chocando-se com as partículas de plasma até emergir na superfície brilhante. A maior parte do trajeto, no caso do calor, é feita em forma de radiação, como ocorre com a luz. Mas um pouco abaixo da superfície o calor faz com que o plasma entre em ebulição, à maneira da água levada ao fogo. Como os turbilhões de matéria nessa região envolvem gás eletrificado, acabam criando potentes campos de força magnética. Esta, por sua vez, gera as oscilações e erupções extraordinárias que os astrônomos podem observar.

Na Antiguidade, os homens se assustavam terrivelmente quando o Sol se apagava. Sem saber que estavam apenas diante de um eclipse — um dos raros momentos em que a sombra da Lua se projeta sobre a Terra —, imaginavam que o seu deus estava em apuros. Os sábios egípcios do tempo dos faraós, por exemplo, ensinavam que nesses momentos o Sol estava sendo devorado por uma porca gigante, um espírito maligno da mitologia da época. Que os antigos pudessem pensar assim não surpreende. O curioso é que as crendices do passado persistem em algum lugar do presente.

Assim, em 1983, quando ocorreu o mais longo eclipse desta década, uma lenda semelhante à dos egípcios voltou a assombrar os indonésios, que tiveram o privilégio de ver a ocultação do Sol em pleno dia. Durante cinco minutos, a Lua, muito mais próxima da Terra, passou à frente do astro-rei. Sua esfera de fogo, então, transformou-se em um lindo disco negro, visível apenas porque à sua volta permaneceu um fino halo de chamas — a corona. De acordo com os indonésios, o Sol tinha acabado de ser devorado pelo monstro mítico Kala Rau.

Muito do interesse da ciência pelos eclipses vem do fato de que eles expõem com mais nitidez o véu flamejante da corona. Os cientistas esperam aprender mais sobre os plasmas para um dia fabricar uma imitação do reator central do Sol. A razão é que, embora na corona não ocorram reações nucleares, ela é um bom exemplo natural de como o plasma se comporta sob a ação de forças magnéticas. Pois é exatamente por meio de grandes ímãs que os físicos tentam espremer os plasmas na Terra: desse modo, podem simular a enorme pressão gravitacional que age no interior do Sol.

"De certa forma estamos usando o Sol como um laboratório", gaba-se o astrônomo norte-americano Ray Smartt, membro de uma equipe de trinta pesquisadores especialmente encarregados de elucidar os segredos da corona. Ele espelha o empenho existente nos tempos atuais em aprender mais sobre o Sol. Num misto de fascinação e espírito prático, o objetivo desses pesquisadores é abrir caminho para o futuro, quando o espaço se tornar cada vez mais importante para o progresso aqui na Terra.

A ciência toma Sol.

Cinco séculos antes de Cristo, o grego Anaxágoras disse que o Sol era uma esfera de ferro incandescente. Ninguém lhe deu ouvidos. O homem só começou a entender o Sol mais de 2 mil anos depois. Em 1610, o italiano Galileu Galilei anunciou ter visto ao telescópio estranhas manchas negras na superfície solar. Hoje se sabe que as manchas são áreas da superfície do Sol onde a temperatura é menor por ação das forças magnéticas ali concentradas. Mas já no século XVII a descoberta de Galileu bastou para acabar com o mito de que o Sol era perfeito e imutável.

Em 1834, o matemático alemão Carl Gauss (1777—1835) teve a brilhante idéia de usar uma bússola para saber se o Sol tinha força magnética como a Terra. Nos anos seguintes, de fato, verificou-se que não só ela existia ali como se tornava mais forte quando o Sol ficava mais carregado com as manchas que tanto intrigaram Galileu. Outra inovação foi trazida pelo astrônomo inglês John Herschel (1792—1871). Em 1839, usando apenas um prato com água, ele mediu pela primeira vez a potência térmica do Sol. Estimou que a temperatura de uma lâmina de água de cerca de 2 centímetros de espessura subia, exposta ao Sol, 1 grau centígrado por minuto — uma indicação bastante boa de quantidade de energia emitida pelo Sol.

Mas o grande salto da ciência solar já tinha sido dado em 1814 com a invenção do espectroscópio, aparelho capaz de decompor a luz como um prisma. Cada substância, ao ser queimada, tem uma espécie de assinatura luminosa. O arco-íris produzido pelo espectroscópio decifra essa assinatura na forma de uma determinada combinação de cores. Assim começou a ser conhecida a composição química do Sol. Aprendeu-se que ele contém os mesmos elementos existentes na Terra, mas em proporções às vezes muito diferentes. Por exemplo, o hélio é 20 por cento do Sol; na Terra, é menos de 1 por cento.

O espectroscópio, ao permitir que se analisasse o interior dos átomos, ajudou a abrir caminho para a grande revolução da Física neste século. Na década de 30 ficou claro que a energia do Sol era fruto de colossais reações atômicas. Foi a primeira vez que se desconfiou de que nem o Sol nem qualquer outra estrela são eternos. E o ciclo de vida do astro-rei, determinado pela quantidade de combustível nuclear disponível, pôde, enfim, ser calculado.

Morre uma estrela: é o fim do mundo

As estrelas empregam um sistema curioso para gerar energia: constroem átomos pesados a partir de átomos mais leves. A luz e o calor que emitem é um simples resíduo do esforço empregado na construção. Todos os elementos conhecidos, tais como o ferro, o oxigênio, o ouro ou o urânio, nasceram dessa forma: assados nas fornalhas estelares. Até o aparecimento das estrelas, há cerca de 15 bilhões de anos, praticamente toda a matéria existente estava na forma de hidrogênio — o avô de todos os outros átomos.

Cerca de 1 milhão de anos depois do seu nascimento, algo de novo aconteceu. As massas de hidrogênio, agrupadas pela atração gravitacional, começaram a criar estrelas e galáxias. Os átomos que ficaram presos nos núcleos estelares, sob forte pressão, fundiram-se sempre aos pares. E não se tratou de uma simples soma: os novos “tijolos” de matéria, contendo dois átomos soldados entre si, formavam um novo elemento, o hélio. O Sol provavelmente nasceu dos restos de outra estrela, que por sua vez também pode ter nascido assim.

Trata-se portanto de um astro de segunda ou terceira geração. Essa hipótese decorre de um fato simples: o Sol contém átomos muito pesados, como o urânio, que se constituem apenas quando uma estrela morre. Nesse caso o “reator” estelar, tendo usado todos os átomos leves que possuía, já não gera o calor e a luz que serviam para conter sua própria gravidade. Assim, o velho astro desmorona sobre si mesmo. A pressão interna momentaneamente se eleva a níveis fantásticos e mesmo os átomos mais pesados podem se formar. Mas esse é também o seu canto do cisne, pois a produção de energia é tão alta que destroça a estrela numa explosão. Os seus gases, lançados ao espaço, serão as sementes de uma nova estrela.

O mesmo destino aguarda o Sol. Mas sua morte não será tão espetacular porque ele contém relativamente pouca matéria. Dentro de 5 bilhões de anos, ao esgotar-se o seu combustível, haverá um excesso fatal de produção energética. A explosão resultante será lenta. O Sol apenas inchará como um balão, engolindo gradualmente os planetas mais próximos. O primeiro a ser devorado será Mercúrio, seu vizinho. Depois será a vez de Vênus e em seguida esta Terra. De amarelo, como hoje, o Sol passará para laranja, depois para vermelho. Sua superfície brilhante, enormemente expandida, terá uma temperatura mais baixa, mas emissão total de calor será maior.

Portanto, antes de desaparecer dentro do já então rarefeito gigante vermelho, a Terra será assada em fogo brando. Em questão de duzentos anos, por exemplo, a temperatura média do planeta vai no mínimo dobrar — e não há forma concebível de vida capaz de resistir a tamanha subversão. As calotas polares, derretendo, encherão os oceanos. Boa parte dos continentes ficará submersa e não haverá refúgio possível contra o calor infernal que se espalhará por toda a parte.

“Uma vasta Amazônia, quente e úmida, se estenderá pelo planeta”, imagina o físico canadense Hubert Reeves. “Mais tarde, intermináveis incêndios consumirão tudo o que há de orgânico.” Reeves imagina que seja possível dobrar o tempo de vida útil do Sol, despejando nele um arsenal de bombas de hidrogênio, de modo a puxar combustível novo das camadas externas para o centro, onde se dão as reações nucleares. Mas talvez nunca venha a existir tecnologia suficiente para fazer essas bombas explodiram, não na superfície, mas dentro do astro, como seria necessário. Enfim, depois de alguns milhares de anos, a própria Terra se fundirá. Baforadas tórridas encerrarão o espetáculo, consumindo e espalhando pelo espaço a matéria do Sol e de todos os planetas, mesmo os mais distantes, como Netuno e Plutão.

No centro do sistema solar, então, restará apenas o antigo núcleo do Sol — uma “anã branca”, no dizer dos astrônomos. Quase cem vezes menor do que a estrela Sol que lhe deu origem, desprovida de combustível, ela queimará os seus restos, lentamente, como o carvão que sobra de uma fogueira. Ao cabo de mais meio bilhão de anos, a anã se tornará negra e gelada e não voltará a brilhar. Em vez disso, a matéria que a rodeava no passado terá formado uma nova estrela, em outro lugar.
Revista Superinteressante

Copérnico: a Terra em seu devido lugar



Copérnico: a Terra em seu devido lugar
A história do sábio que provou que os planetas giram em volta do Sol é a história de uma idéia que faz uma revolução no modo de ver o mundo
Almyr Gajardoni

Todos os dias, o sol surge a leste e desaparece a oeste. À noite, a Lua e as estrelas percorrem o mesmo caminho. Tudo, no Universo, parece girar em torno da Terra. Não admira que essa idéia tenha ocorrido aos primeiros antepassados do homem. Em plena era dos satélites artificiais, dos vôos espaciais, dos supertelescópios óticos e radiotelescópios, sabe--se que ela está errada; mas nossos antepassados, que tinham apenas os olhos para observar o céu, demoraram alguns milhares de anos para descobrir o erro. Descoberto, foi preciso travar uma longa batalha para conseguir que a verdade fosse aceita. O processo consagrou o nome do astrônomo e matemático polonês Nicolau Copérnico, o primeiro estudioso a demonstrar com observações e cálculos precisos que a Terra não é o centro do Universo, mas apenas um pequeno astro que, como todos os outros, executa movimentos variados pelo espaço.

Copérnico foi o mais novo dos quatro filhos de um comerciante polonês da cidade de Torun, na conturbada fronteira com a Alemanha. Nasceu em 19 de fevereiro de 1473 e aos 10 anos ficou órfão, o que o colocou sob a proteção do tio, Lucas Waczenrode, que logo depois se tornaria bispo de Ermland. São duas informações importantíssimas: mostram que Copérnico viveu em pleno Renascimento, luminoso período da história da humanidade em que a cultura e o saber fizeram avanços revolucionários; e viveu como servidor da Igreja Católica, condição que lhe dava acesso a todo o saber avaramente entesourado pela milenar instituição.

Em 1491, aos 18 anos portanto, Copérnico entrou para a Universidade de Cracóvia, ainda na Polônia. Ali ele se interessou pela Matemática e pela Astronomia -- mas sobretudo embebeu--se do humanismo pregado com liberdade por alguns mestres. Era um vigoroso movimento que se alastrava pela Europa, depois de ter tomado conta da Itália sob inspiração do renascer do interesse pelo conhecimento das coisas do homem e do mundo onde vive. O tio bispo pensava conseguir--lhe um lugar no trabalho religioso da catedral de Frauenberg, na sua diocese, na Prússia, mas ele teve de esperar até 1501 pela sinecura.

Enquanto esperava, foi estudar à custa do tio na Itália -- primeiro em Bolonha, ostensivamente para aprender Direito Canônico, embora a observação por ele publicada dissesse respeito ao eclipse da estrela Aldebarã e não a qualquer passagem das Sagradas Escrituras. Aperfeiçoou--se sobretudo em Matemática, e antes de concluir os estudos já dava conferências até mesmo em Roma, a sede mundial da Igreja. Ali, uma palestra sua sobre as inferências matemáticas de um eclipse lunar recém--acontecido foi vivamente aplaudida pelos assistentes. Em 1500 voltou à Polônia, mas apenas para convencer os superiores (o tio em particular) de que seria conveniente saber Medicina para melhor exercer o sacerdócio.

E assim ganhou outros cinco anos na Itália, mais precisamente em Pádua. Quando retornou à Polônia, em 1506, então definitivamente, era um humanista que sabia grego, Matemática, Astronomia -- e tinha diplomas de advogado e médico. Considerava--se culturalmente apto para o que se propunha, e não sem razão. Suas habilidades como médico tornaram--no um sacerdote muito popular entre ricos e pobres. Seus conhecimentos de Matemática permitiram--lhe participar da elaboração de uma abrangente reforma monetária em seu país. E até como chefe militar deu provas de competência, comandando os monges do castelo de Allenstein na resistência aos ataques dos Cavaleiros Teutônicos, em 1520. O castelo não se rendeu.

De volta da Itália, Copérnico ficou agregado ao castelo do tio, em Heilsberg, como médico particular. Seguramente mais da metade do seu tempo era dedicado à Astronomia, sua verdadeira paixão. Mas ele era prudente, cauteloso, ao contrário do temperamento que se atribui aos eslavos: por ocasião do concílio de Latrão, em 1515, a Igreja o convidou a opinar sobre a reforma do calendário; cortesmente, recusou, alegando que pouco sabia sobre os movimentos dos astros para elaborar um calendário adequado.

O movimento dos astros -- esta era a verdadeira questão para ele. Tudo o que se sabia a respeito vinha ainda das observações daqueles antepassados que supunham que a Terra estava imóvel, no centro do Universo, e todos os outros astros giravam em torno dela. Muitos pensadores ilustres ocuparam--se dessa questão. Mas foi um astrônomo nascido em Alexandria, no Egito, chamado Cláudio Ptolomeu, quem compilou tudo o que se havia observado e pensado antes, para formar um vasto sistema que pretendia explicar o funcionamento do Universo. Este tem sido, ao longo dos séculos, o grande sonho da humanidade -- e continua sendo até hoje.

De Ptolomeu sabe--se pouco. Nasceu na segunda metade do primeiro século da era cristã. Quis o acaso, assim, que estivesse no local certo, no tempo certo, para desfrutar de outro glorioso momento da história da cultura. Pois havia em Alexandria uma biblioteca notável, cuja construção começara pelo menos trezentos anos antes. Ali trabalharam e estudaram sábios de renome: Filon, Eratóstenes, Euclides, Estrabão, Aristarco, Hiparco e muitos, muitos outros. Entre tantos houve alguns que acharam que um Universo com o Sol ao centro seria mais lógico. Mas a idéia da Terra no centro tinha a seu favor as preferências de Aristóteles e Platão, dois pesos pesados da cultura ocidental.

E foi por aí que Ptolomeu seguiu, depois de ter considerado (e logo abandonado) a hipótese do Sol como centro de tudo. Quando a Igreja cristã conseguiu estabelecer seu domínio religioso, intelectual e político sobre o mundo ocidental então conhecido, o sistema de Ptolomeu, chamado geocentrismo, se tornou quase um artigo de fé. Criticá--lo seria criticar a própria Bíblia -- algo impensável num mundo governado pela religião. E assim foi por toda a Idade Média, o longo milênio em que a cultura se recolheu às igrejas e conventos e a população leiga ficou entregue à ignorância. Mesmo para os sábios ligados à Igreja, cultura era forma inútil de ler, reler, conhecer até os mais insignificantes detalhes o que havia sido pensado e escrito pelos filósofos antigos, Aristóteles sobretudo.

Sobre o Universo, esse pensamento dizia que, sendo uma criação divina, era simples e perfeito. Ora, o círculo é a forma mais simples e perfeita; daí porque se supunha que todos os corpos tinham forma redonda e executavam, em torno da Terra, movimentos segundo órbitas circulares. Quando Copérnico nasceu, a Idade Média estava chegando ao fim; muitos já não acreditavam que saber fosse apenas conhecer o que os antigos haviam escrito, mas que era importante também observar, pesquisar, conferir. Isso, em todos os campos do conhecimento e também na Astronomia.

As primeiras observações mostraram que um Universo composto da Lua, do Sol, dos planetas Mercúrio, Vênus, Marte, Júpiter e Saturno e ainda das estrelas, tudo girando ao redor da Terra em órbitas circulares, seria uma tremenda confusão. O problema não era novo, já havia preocupado o próprio Ptolomeu, que em seu livro clássico Almagesto (um dos raros a sobreviver à destruição da biblioteca de Alexandria no século III) havia estabelecido que os corpos celestes não giram diretamente em torno da Terra. Haveria no céu círculos grandes, chamados condutores, pelos quais eles se moveriam em volta da Terra; mas executariam outro movimento circular menor -- o epiciclo -- dentro do condutor. As estrelas, por seu lado, estariam fixas dentro de seu condutor.

Mas ainda não dava certo. Planetas, os gregos já haviam observado, são corpos errantes (planeta quer dizer isso mesmo em grego), que andam para lá e para cá. Copérnico, no castelo do tio, começou a fazer observações sistemáticas do céu. Marte, sobretudo, despertou--lhe a atenção. Noite após noite acompanhou seu movimento e o que descobriu parecia assombroso. Embora seus instrumentos fossem rudimentares, percebeu que a velocidade do planeta era cada vez menor. Um dia, parou por completo. Copérnico esperou que Marte se movimentasse outra vez e, quando isso aconteceu, voltou para trás. De novo baixou a velocidade, até parar de todo; andou outra vez, tornou a parar. Por fim, recomeçou a andar, de novo para a frente.

Se o movimento de Marte fosse realmente esse (e deveria ser, se a Terra estivesse parada no seu lugar), era preciso renunciar à idéia das órbitas circulares perfeitas. Os epiciclos de Ptolomeu eram a resposta ainda aceita a essa questão, mas outra pergunta ficava sem resposta: por que os planetas se tornavam cada vez maiores, mais brilhantes, ao longo de sua trajetória? Ou cresciam, o que parecia absurdo; ou ficavam tão mais perto da Terra que certamente estariam saindo dos epiciclos onde deveriam permanecer. Entre 1510 e 1514, com a tranqüilidade que lhe era característica, Copérnico pôs--se a estudar os pensadores antigos que ousaram dar um movimento à Terra e colocar o Sol como centro do Universo.

Depois de minuciosos cálculos matemáticos, Copérnico deduziu: a Terra executa uma rotação completa em torno de seu eixo. Isso explica o movimento aparente do Sol e das estrelas, produzindo o dia e a noite. Mas ainda não explicava as caminhadas errantes de Marte e dos demais planetas. O erro, ele descobriu logo depois com novos cálculos, estava em atribuir ao Sol o movimento circular anual que, na verdade, é executado pela Terra.

Isso já era boa parte dos problemas e Copérnico animou--se a escrever um pequeno comentário sobre o movimento dos corpos celestes a partir de sua arrumação no céu. Sobrinho do bispo, a quem servia no castelo episcopal, sabia como ninguém que sua teoria causaria enorme rebuliço na Igreja e seria ferozmente combatida. Colocou--a para circular, prudentemente, apenas entre os amigos mais chegados, rotulando--a sempre como uma hipótese para calcular as posições futuras dos astros.

Um daqueles amigos observou: se os planetas se movem anualmente em torno do Sol e diariamente sobre seu eixo, então Vênus e Mercúrio devem apresentar fases, como a Lua. Seguro de si, Copérnico garantiu: “Eles realmente têm fases. Quando lhe aprouver, o bom Deus dará ao homem meios de observá--las”. Outro problema permanecia insolúvel para os recursos da época: se a Terra realmente executasse aquele movimento anual, então deveria haver uma alteração na posição das estrelas, dentro da sua esfera, ao longo do ano. É o que se chama paralaxe anual. Copérnico assegurou que a paralaxe existia mas não podia ser observada, porque as estrelas estavam a enorme distância da Terra. Isso levava a rever a idéia que se tinha, então, do tamanho do Universo.

A Igreja Católica não se abalou de imediato com a “hipótese”. O papa Clemente VII deu--lhe sua aprovação formal e pediu a Copérnico uma demonstração matemática de suas teorias. Mas o feroz reformador protestante Martinho Lutero não foi condescendente. “A Bíblia diz que Josué mandou o Sol parar no firmamento e não a Terra”, comentou irado, para mostrar que a nova teoria contrariava as escrituras sagradas. Ele se referia ao episódio em que os judeus, de volta do exílio no Egito, lutavam para conquistar suas terras na Palestina. Uma batalha especialmente dura contra os amorreus não chegaria ao fim antes do anoitecer e, então, Josué, que sucedera a Moisés na liderança do povo, ordenou: “Sol, detém--te em Gideon e tu, Lua, no vale de Aijalon”. Segundo a Bíblia, os dois astros se mantiveram imóveis quase um dia inteiro e a batalha foi vencida.

Copérnico, mais prudente do que nunca, recusava--se a entrar em polêmicas. Pouco antes, com a morte do tio, precisara deixar o castelo de Heilsberg para assumir sua tarefas na catedral de Frauenburg. Ali, juntou oitocentas pedras e uma barrica de cal que seriam usadas nas obras da igreja e construiu para si uma torre sem teto, que transformou em observatório. Iniciou então uma série de observações do céu, exatas e minuciosas, com as quais confirmou (ou retificou, quando necessário) pontos de sua teoria. Paralelamente, lia e relia os autores antigos.

Supõe--se que estivesse reunindo o peso de quantos pensadores pudesse para dar sustentação à sua obra definitiva, Das revoluções dos corpos celestes. Ele a escrevia devagar, conferindo tudo, observando e pensando. Por volta de 1540, auxiliado pelo professor de Matemática da Universidade de Wittenberg, Georg Joachim Rheticus, Copérnico deu os retoques finais em sua teoria. Rheticus preparou um folheto, a que chamou Primeiro relato, onde falava apenas do movimento da Terra. Outros relatos deveriam aparecer, mas Copérnico finalmente se decidiu. Sua teoria estava completa, testada e conferida, e ele, já doente, acreditava--se no fim da vida e fora do alcance de uma possível perseguição por parte da Igreja. Ainda assim, julgou melhor fazer a impressão em Nuremberg, cidade alemã sob influência protestante. Foi o pastor luterano Andreas Osiander quem cuidou do trabalho -- e aparentemente tinha mais medo de Lutero do que Copérnico do papa. Por sua conta, sem pedir licença ao autor, colocou um prefácio onde informava aos leitores que aquilo não era uma visão real do Universo, mas apenas “um cálculo coerente com a observação”.

Como Osiander não assinou seu prefácio, os leitores pensaram que essa era a opinião do autor. O próprio Copérnico não pôde protestar, pois consta que o primeiro exemplar do livro, levado às pressas por um mensageiro, foi encontrá--lo a 24 de maio de 1543 no leito de morte -- e ele nem sequer conseguiu virar a primeira página. De qualquer forma, tornara--se pública a teoria heliocêntrica. Lutero já reclamara antes: “Ela vai virar a Astronomia de cabeça para baixo”. Copérnico via mais além: tirando o homem e a Terra do centro de tudo, sua teoria levaria à revisão da forma de encarar o enigma da formação do Universo, do surgimento da vida e do próprio homem.

Mas isso se faria devagar, bem ao ritmo daqueles tempos. Durante trinta anos nada aconteceu de prático. Então começou a ser conhecido o nome de um frade dominicano disposto a investir contra toda a sabedoria esclerosada que a Igreja insistia em manter inviolada. Chamava--se Giordano Bruno. Ao contrário de Copérnico, era ousado, irreverente, polemista, como costumavam ser os do sul da Itália. Durante anos viajou pela Europa, de capital em capital, de universidade em universidade. Invariavelmente, por se tornar incômodo, acabava expulso. Foi bater em Veneza e lá caiu nas mãos da Inquisição, que durante seis longos anos usou todos os recursos para fazê--lo abjurar tais idéias. Bruno, é verdade, vacilou várias vezes, mas sempre se recompôs -- e por isso acabou na fogueira, em 17 de fevereiro de 1600, aos 52 anos.

O heliocentrismo, em todo caso, sobreviveu à fogueira, com um acréscimo que Bruno fizera: a idéia do Universo infinito. Exatamente quando ele viajava para Veneza, onde começaria seu martírio, chegava à Universidade de Pádua um jovem professor que ergueria do chão a bandeira da nova idéia. Galileu Galilei era o oposto de Bruno -- prudente como Copérnico, meticuloso no trabalho e nas pesquisas, avesso a controvérsias. Passou à história como o pai da moderna ciência, pois tinha a mania de tudo pesquisar, experimentar, conferir. Por essas virtudes, foi também perseguido pela Igreja, à qual prestava serviços. Tendo sabido que fora oferecido ao bispo de Veneza um aparelho que tornava possível enxergar mais longe, obteve uma simples descrição do objeto e então, com seus conhecimentos de ótica, que preferia chamar perspectiva, construiu seu próprio telescópio.

Com ele, mirou o céu e enxergou com os próprios olhos pelo menos duas provas de que Copérnico estava certo: quatro luas davam voltas em Júpiter, o que significava que pelo menos aqueles quatro corpos celestes não giravam em torno da Terra: e, Vênus, como o polonês anunciara, tinha fases como a Lua. Estava--se em 1610. O Renascimento já era movimento consagrado, mas a Igreja supôs que poderia continuar escondendo a verdade. Os sábios religiosos simplesmente recusaram--se a olhar pelo telescópio e, fiéis a Aristóteles, continuaram a sustentar que a Terra, imóvel, era o centro do Universo. Galileu foi condenado à prisão perpétua, oficialmente abjurou sua idéias para escapar à tortura e morreu em 1642, aos 78 anos.

Mas o heliocentrismo não morreu com ele. Mais ao norte, na Alemanha, um astrônomo e matemático de notável capacidade já anos antes se tornara seu porta--voz. Johannes Kepler, nascido em 1571, tinha duas armas poderosas, que faltaram a Copérnico: o telescópio, que lhe permitia observar os corpos celestes, e uma enorme coleção de dados preciosos sobre a movimentação dos astros, de autoria de seu mestre Tycho Brahe. Este, por ironia, dedicara--se anos a fio a essas observações, anotando tudo com extremo rigor, porque sonhava restabelecer o sistema de Ptolomeu, ainda que com algumas adaptações.

Kepler reviu tudo o que já se pensara a respeito, corrigiu os erros cometidos pelo próprio Copérnico e chegou à descoberta de que as órbitas dos planetas em torno do Sol são elípticas, e não circulares -- e que o Sol está num dos focos, não no centro dessa elipse. Por isso, quando está mais próximo do Sol, o planeta anda mais depressa; quando está mais longe, anda mais devagar. Kepler mostrou ainda que, qualquer que seja a velocidade, a área percorrida pelo raio vetor (a reta imaginária que liga o planeta ao Sol), num mesmo período de tempo, é sempre igual. Estava explicado aquele comportamento, observado por Copérnico. Mas Das revoluções dos corpos celestes continuou, inutilmente por sinal, no Index das obras proibidas pelo Vaticano até 1835 -- apenas três anos antes que, como diria Copérnico, o bom Deus concedesse aos homens capacidade para medir até mesmo a paralaxe anual das estrelas, a única parte da grande obra revolucionária que ainda faltava comprovar na prática.
Revista Superinteressante

domingo, 12 de fevereiro de 2012

A cor das estrelas

As estrelas apresentam diferentes colorações: enquanto Rigel, na constelação de Orion, e Spica, na constelação da Virgem, são nitidamente azuladas, a estrela mais luminosa do céu - Sirius -, na constelação do Cão Maior, assim como Vega, na c.onstelação da Lira, brilham na cor branco-azulado; algumas são alaranjadas, como Aldebaran, na constelação do Touro, e Arcturus, na constelação do Boieiro; e outras, ainda, são avermelhadas, como Antares, na constelação do Escorpião. Estas estrelas, de primeira grandeza, são as únicas que permitem ao olho humano perceber a variação de sua tonalidade cromática.

No interior do órgão receptor de radiação luminosa - o olho humano, composto de uma lente, o cristalino, que focaliza a luz recebida num anteparo sensível, a retina estão as dificuldades de percepção das cores das estrelas. A retina possui dois tipos de células receptoras, sensíveis à luz: os bastonetes e os cones, que se comunicam através do nervo óptico com os neurônios do cérebro. Existe uma maior proporção de bastonetes na periferia; ao contrário do que ocorre com os cones, que se concentram na região central· da retina.

Os cones distinguem as cores, enquanto os bastonetes são sensíveis àintensidade luminosa, percebendo-a em diversas tonalidades de cinza, .do claro ao escuro, Os bastonetes são muito mais sensíveis do que os cones, que somente agem em presença de uma radiação luminosa suficientemente intensa. Assim, quando observamos as estrelas, a sua luz aciona a fotossensibilidade dos bastonetes sem, no entanto, excitar os cones. Em conseqüência, as cores das estrelas - em especial as mais tênues - não são notadas: apesar de coloridas, elas não se destacam em virtude de uma deficiência fisiológica natural do olho humano.

Outro dado que dificulta a percepção da cor das estrelas é o fato de que as observações ocorrem à noite, quando a pupila do olho se encontra totalmente dilatada para recolher o máximo de energia luminosa. Como resultado, a imagem formada pelo olho à noite é de qualidade inferior à obtida à luz do dia, a deformação chamada aberração cromática cria minúsculos arco-íris ao redor de cada estrela. A abertura da pupila, porém, não é o único processo de adaptação ao escuro: os bastonetes e oscones também se tornam gradativamente mais sensíveis, embora cada um se adapte com velocidades diferentes. Após dez minutos na escuridão, os cones tornam-se quarenta vezes mais sensíveis, mas ficam nisso; os bastonetes, ao contrário,continuam se adaptando até ficar centenas de vezes mais sensíveis que os cones. A medida que a vista se acomoda ao escuro, como os bastonetes são mais sensíveis ao azul, fica mais difícil distinguir luzes vermelhas do que luzes azuis igualmente tênues. Esse éo efeito Purkinje, assim chamado em homenagem ao fisiologista experimental checo Jan Evangelista Purkinje (1787-1869). Explica a predominância das cores azuis sobre as vermelhas nas estrelas. Por esse motivo, os astrônomos usam lâmpadas vermelhas durante a observação, pois essa luz absolutamente não afeta a adaptação dos bastonetes à escuridão.

Independente de como um olho humano pode percebê-la a cor de uma estrela se relaciona com a temperatura de sua superfície. As estrelas relativamente frias, cuja temperatura fica em torno dos 3 000 graus Kelvin (3 273 graus centígrados), parecem vermelhas; as amarelas, como o Sol, possuem temperatura superficial de cerca de 6 000 graus Kelvin e, finalmente, as de cor branco-azulado apresentam temperaturas superiores a 10 000 graus Kelvin. A coloração das estrelas é provocada pela distribuição da energia emitida no espectro luminoso: quanto maior a temperatura, a energia se desloca para os comprimentos de onda mais curtos (em direção ao azul), aumentando a luminosidade. Assim, entre 3000 e 4000 graus Kelvin, a maior quantidade da energia irradiada está na região do infravermelho e a estrela parecerá vermelha. Por outro lado, acima dos 10000 graus Kelvin, a energia emitida estará na região do ultravioleta e do azul, dando esta coloração a estrela.
Revista Superinteressante

Solventes também agridem ozônio



Não é apenas o clorofluorcarbono (CFC), um gás usado em aerossóis, aparelhos de refrigeração e plásticos, que afeta na Antártida a camada de ozônio que protege a Terra dos raios ultravioleta do Sol. Os cientistas identificaram mais dois poderosos inimigos do ozônio. São eles os solventes clorofórmio de metila (CH3CCI3) e tetracloreto de carbono (CCI4), usados na fabricação de tintas e graxas para a indústria automobilística e ainda como cola de tapete. Para sorte da Terra, os solventes têm uma vida média mais curta que o CFC. Portanto, boa parte deles se dissipa antes de alcançar a estratosfera, onde se encontra o ozônio, acima de 10 mil metros de altitude...Revista Superinteressante

A indomável energia das marés

A indomável energia das marés
As ondas, as marés e o calor dos oceanos abrigam reservas energéticas inesgotáveis. O difícil é domesticar essas forças selvagem pata convertê-la de modo eficiente em eletricidade

As gigantescas massas de água que cobrem dois terços do planeta constituem o maior coletor de energia solar imaginável. Os raios solares não apenas aquecem a água da superfície, como também põem em movimento a maquinaria dos ventos que produz as ondas. Finalmente, as marés, originadas pela atração lunar, que a cada 12 horas e 25 minutos varrem os litorais, também representam uma tentadora fonte energética. Em conjunto, a temperatura dos oceanos, as ondas e as marés poderiam proporcionar muito mais energia do que a humanidade seria capaz de gastar - hoje ou no futuro, mesmo considerando que o consumo global simplesmente dobra de dez em dez anos.

O problema está em como aproveitar essas inesgotáveis reservas. É um desafio à altura do prêmio, algo comparável ao aproveitamento das fabulosas possibilidades da fusão nuclear. Apesar das experiências que se sucederam desde os anos 60, não se desenvolveu ainda uma tecnologia eficaz para a exploração comercial em grande escala desses tesouros marinhos, como aconteceu com as usinas hidrelétricas, alimentadas pelas águas represadas dos rios, que fornecem atualmente 10 por cento da eletricidade consumida no - mundo (no Brasil, 94 por cento).

A idéia de extrair a energia acumulada nos oceanos, utilizando a diferença da maré alta e da maré baixa, até que não é nova. Já no século XII havia na Europa moinhos submarinos, que eram instalados na entrada de estreitas baías — o fluxo e o refluxo das águas moviam as pedras de moer. Mas os pioneiros da exploração moderna das marés foram os habitantes de Husum, pequena ilha alemã no mar do Norte. Ali, por volta de 1915, os tanques para o cultivo de ostras estavam ligados ao mar por um canal, onde turbinas moviam um minigerador elétrico durante a passagem da água das marés; a eletricidade assim produzida era suficiente para iluminar o povoado. Muito mais tarde, em 1967, os franceses construíram a primeira central mareomotriz (ou maré motriz, ou maré - elétrica; ainda não existe um termo oficial em português), ligada à rede nacional de transmissão. Uma barragem de 750 metros de comprimento, equipada com 24 turbinas, fecha a foz do rio Rance, na Bretanha, noroeste da França. Com a potência de 240 megawatts (MW), ou 240 mil quilowatts (kW), suficiente para a demanda de uma cidade com 200 mil habitantes, a usina de Rance é a única no mundo a produzir, com lucro, eletricidade em quantidade industrial a partir das marés.

O exemplo francês estimulou os soviéticos em 1968 a instalar perto de Murmansk, no mar de Barents, Círculo Polar Ártico, uma usina piloto de 20 MW, que serviria de teste para um projeto colossal, capaz de gerar 100 mil MW, ou oito vezes mais que ltaipu. A usina exigiria a construção de um gigantesco dique de mais de 100 quilômetros de comprimento. Mas a idéia foi arquivada quando se verificou que seria economicamente inviável. O desenvolvimento de um novo tipo de turbina, chamada Straflo (do inglês, straight flow, fluxo direto), permitiu reduzir em um terço os custos de uma usina mareomotriz.

Os canadenses foram os primeiros a empregá-la. Em 1984, acionaram uma usina experimental de 20 MW, instalada na baía de Fundy (na fronteira com os Estados Unidos, na costa Leste), onde o desnível de 20 metros entre as marés é o maior do mundo (na usina de Rance, por exemplo, a diferença é de 13,5 metros). Se os testes forem satisfatórios, até o final do século poderá ser construída na baía de Fundy uma usina mareomotriz de 5 500 MW. No Brasil, que não prima por marés de grande desnível, existem três lugares adequados à construção dessas usinas, relaciona o professor Reyner Rizzo, do Departamento de Oceanografia Física da Universidade de São Paulo: na foz do rio Mearim, no Maranhão, na foz do Tocantins, no Pará, e na foz da margem esquerda do Amazonas, no Amapá. "O impacto ambiental seria mínimo", explica Rizzo, "pois a água represada pela barragem não inundaria terras novas, apenas aquelas que a própria maré já cobre."

Mais surpreendentes ainda são as especulações sobre o aproveitamento energético do movimento das ondas: em teoria, se fosse possível equipar os litorais do planeta com conversores energéticos, as centrais elétricas existentes poderiam ser desativadas.

Basta pensar que uma onda de 3 metros de altura contém pelo menos 25 kW de energia por metro de frente. O difícil, talvez impossível, é transformar eficientemente toda essa energia em eletricidade — os dispositivos desenhados até hoje são em geral de baixo rendimento. E não é por falta de idéias — desde 1890, somente na Inglaterra foram concedidas mais de 350 patentes a dispositivos para aquela finalidade.

A maioria usa o mesmo princípio: a onda pressiona um corpo oco, comprimindo o ar ou um líquido que move uma turbina ligada a um gerador. Com esse processo, a central experimental de Kaimei, uma balsa de 80 por 12 metros, equipada com turbinas verticais, funciona desde 1979 em frente da costa japonesa, produzindo 2 MW de potência. Na Noruega, cujo litoral é constantemente fustigado por poderosas ondas, foi construída em 1985 uma minicentral numa ilha perto da cidade de Bergen, na costa Oeste. Ao contrário do sistema japonês, o equipamento não flutua no mar, mas está encravado numa escarpa. Produz 0,5 MW, o suficiente para abastecer uma vila de cinqüenta casas. A instalação consiste em um cilindro de concreto, disposto verticalmente num nicho aberto com explosivos na rocha. A extremidade inferior, submersa, recebe o impacto das ondas, que comprimem o ar coluna acima no cilindro. O ar, sob pressão, movimenta a turbina, antes de escapar pela extremidade superior. O movimento rítmico das ondas assegura que a turbina gere eletricidade sem parar. Mas o projeto mais original é, sem dúvida, o do engenheiro Stephen Salter, da Universidade de Edimburgo, na Escócia. Modelos reduzidos dele já foram testados no lago Ness — aquele mesmo do suposto monstro.

O sistema chama-se "pato de Salter" (Salter’s cam, em inglês, eixo excêntrico de Salter; o nome em português vem do fato de o equipamento imitar o movimento das nadadeiras de um pato). Consiste numa série de flutuadores, semelhantes ao flap dos aviões, ligados a um eixo paralelo à praia. A parte mais bojuda dos "patos", enfrenta as ondas, cujo movimento rítmico faz bater os flutuadores, girando o eixo que aciona a turbina como um pedal de bicicleta, que só transmite o movimento numa direção. O rendimento desse sistema promete ser excelente, pois parece capaz de aproveitar 80 por cento da energia das ondas. É esperar para ver. Quando os preços do petróleo dispararam na década de 70, os americanos chegaram a imaginar que outro sistema, as centrais térmicas marinhas, oferecesse a saída para a crise energética que ameaçava frear a economia mundial.

O pioneiro dessa técnica tinha sido um inventor solitário e voluntarioso, o francês Georges Claude, que na década de 30 investiu toda a sua considerável fortuna na construção de uma dessas usinas nas costas brasileiras. Ele aportou em outubro de 1934 no Rio de Janeiro, a bordo do cargueiro La Tunisie, onde recebeu as boas - vindas e os votos de boa sorte de ninguém menos que o presidente Getúlio Vargas. Claude, então com 64 anos de idade, enriquecera com a invenção, em 1910, do tubo de gás neon para iluminação, mas considerava um desafio ainda maior a busca de novas fontes de energia. Ele demonstrara que uma diferença de 18 graus entre a temperatura das águas aquecidas da superfície e as mais frias da profundidade do oceano era suficiente para movimentar um sistema fechado no qual a amônia, ou a água, num ambiente de vácuo parcial, se evapora, movendo uma turbina que gera eletricidade, e volta a se condensar, para tornar a evaporar, movimentando novamente a turbina e assim por diante. Com obstinação — e muito dinheiro —, Claude construíra uma usina experimental na baía de Matanzas, em Cuba. Se o princípio do sistema tinha uma aparência simples, a sua execução foi extremamente trabalhosa.

Um tubo precisava trazer a água da superfície do mar para a usina na beira da praia; um segundo e enorme tubo, de 1 metro de diâmetro e quase 1 quilômetro de comprimento, sugaria a água do fundo do mar para a unidade de refrigeração. Claude chegou a montar uma via férrea de 2 quilômetros em direção ao mar para fazer mergulhar o tubo. Na terceira tentativa, no dia 7 de setembro de 1930, os cubanos viram finalmente chegar a água à usina, na temperatura de 11 graus, e a eletricidade começar a ser produzida. Claude instalou depois uma nova usina a bordo de um navio cargueiro.

Em alto-mar, raciocinava o inventor, não enfrentaria o problema de trazer o tubo à praia — ele desceria verticalmente do próprio casco do navio. Com essa tarefa, o La Tunisie chegou ao Rio de Janeiro. Depois de quatro meses de preparativos, começou a delicada operação de descer os 800 metros de tubo. Mas o movimento das ondas impediu a soldagem perfeita de uma das 112 seções — e o projeto acabou indo água abaixo. Georges Claude morreu arruinado em 1960, sem realizar seu sonho. A técnica porém sobreviveu, conhecida pela sigla ETM (energia térmica dos mares), ou OTEC em inglês (ocean thermic energy conversion, conversão da energia térmica dos oceanos).

O governo francês voltaria a utilizá-la em 1948, com a construção de uma usina experimental ao largo de Abidjan, na Costa do Marfim, África Ocidental. O projeto mais ambicioso até agora foi o da companhia americana Lockheed, no início dos anos 70, abandonado afinal por razões econômicas. Seria uma gigantesca central dotada dos recursos tecnológicos de que Claude não dispunha em sua época: do tamanho de um superpetroleiro de 300 mil toneladas, flutuaria no mar como um iceberg, no qual apenas a torre de acesso, de 16 metros, estaria acima da superfície.

Da parte inferior da estrutura submersa penderiam os tubos — com 500 a 700 metros de comprimento — para sugar a água fria; pela parte superior, entraria a água aquecida da superfície um líquido operante de baixo ponto de ebulição (que vira vapor em temperaturas relativamente baixas), como o amoníaco, o freon ou o propano, impulsionaria as turbinas. Ainda que o rendimento final fosse irrisório, pois 97 por cento da energia produzida era consumido no próprio processo de bombear a água de tamanha profundidade, os quatro geradores previstos no projeto proporcionariam uma potência de 60 MW. Com os preços do petróleo nas nuvens, a operação então se justificava. Mas quando as cotações desabaram, esse e outros projetos de conversão de energia térmica dos oceanos foram arquivados. Resta aguardar a próxima crise energética para saber se a humanidade tentará novamente aproveitar a imensa generosidade dos mares, com outras tecnologias cada vez mais avançadas, ou se permanecerão os oceanos para sempre indomáveis.

Ondas de vento

Todo surfista sonha com a onda perfeita, aquela que vem quebrando progressivamente, de uma extremidade a outra, permitindo as mais ousadas evoluções sobre a prancha. Como os célebres "tubos" de Jeffrey’s Bay, na África do Sul, onde é possível ficar até dois minutos descendo a mesma onda. Perfeitas, ou imperfeitas, as ondas se formam a partir da ação dos ventos sobre a superfície do mar. Existe uma correlação bem definida entre a velocidade do vento e o tamanho das ondas. Tanto que a escala Beaufort, que mede a intensidade dos ventos, baseia-se na observação do aspecto da superfície marinha.

Uma vez formadas, as ondas viajam pelo alto - mar até encontrar as águas comparativamente mais rasas, próximas à terra. Nesse encontro, a base das ondas começa a sofrer certa resistência. Isso faz aumentar sua altura. À medida que o fundo se torna mais raso, a crista da onda, que não está sujeita a essa resistência, tende a prosseguir com maior velocidade. E a onda quebra. Se o fundo do mar é rochoso, como no Havaí, as ondas alcançam grande altura; já na areia, a energia é absorvida, do que resultam ondas menores.
Revista Superinteressante

Geografia e a Arte

Geografia e a Arte
Currais Novos